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ABSTRACT

For a solvable monotone complementarity problem-we show-that each

feasible point which is not a solution of the problem provides simple

numerical bounds for some or all components of all solution vectors.

Consequently for a solvable differentiable convex program each primal-dual

feasible point which is not optimal provides simple numerical bounds for

some or all components of all primal-dual solution vectors. -We also give an

existence result and simple bounds for solutions of monotone complementarity

problems satisfying a new, distributed constraint qualification. This
74

result carries over to a simple existence and boundedness result for dif-

o! ferentiable convex programs satisfying a similar constraint qualification.

AMS (MOS) Classification: 90C30, 90C25

Key Words: Nonlinear programming, complementarity, monotonicity,

convexity, bounds

Work Unit Number 5: Optimization and Large Scale Systems

lo Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grants MCS-8200632 and MCS-8102684.



SIGNIFICANCE AND EXPLANATION

Simple bounds are given for solutions of fundamental optimization

problems: monotone complementarity problems and convex programs. It is

shown that each nonoptimal but feasible point carries within it simple

numerical information which bounds some or all components of all solu-

tion vectors. Thus bounds are obtained without solving the problems.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report.
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SIMPLE BOUNDS FOR SOLUTIONS OF MONOTONE

COMPLEMENTARITY PROBLEMS AND CONVEX PROGRAMS

0. L. Mangasarian, L. McLinden

1. The Monotone Complementarity Problem

This work is based on an extremely simple, but apparently unnoticed,

property of the monotone complementarity problem [2,5,8,11,12] of finding

a (z,w) in the 2k-dimensional Euclidean space R2k such that

(1.1) w = F(z) > O, z > O, zw = 0

Here F: D - Rk is a monotone function on D where Rk k D c Rk, that is

(z -z )(F(z 2) - F(z )) > 0 for all z , z2 D

The property is the following:

1.1 Theorem Let (z,w) be some feasible point of a solvable monotone

complementarity problem (1.1), that is w = F(z) > 0, z > 0. Any solution

(zw) of (1.1) is bounded as follows:

(a) Pl l: I zw/min w1 .- zw /min wi

(b) N(j((l <-- / mi n z i I J

(c) N11' wjI.l <--zw/min {z ic J , wIEI }

where I = (wl>O} and J = {ilzi>O}.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grants MCS-8200632 and MCS-8102684.
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Proof For any solution ) of (1.1) we have by the monotonicity of

F and i = 0 that

zw > ZYE + Z;

Hence by the nonnegativity of (z,w) and (i,;) we have

(d) zw > 1 1Wl I lilill rain WlI.

(b) zw > z J;j >ll;Illl min zi., j

(c) zw> lWl + Zjwa > IZlWjlll - rin {zij wi I} 1

Theorem 1.1 is a partial extension to the monotone complementarity

problem of a corresponding result, Theorem 2.2 of [7], for the positive

semidefinite linear complementarity problem. Note that, unlike the linear

case, feasibility for the nonlinear monotone complementarity problem does

not imply solvability as shown by the simple example of [10].

Theorem 1.1 shows that any feasible point (z,w) of a solvable

monotone complementarity problem (1.1) which is not a solution of the

problem (so that at least I is nonempty or J is nonempty) provides

some information about the magnitude of the solution set. In certain

cases, such as when w > 0, we get a bound on all components of all

solution vectors z.

With the bounds given by Theorem 1.1 it is possible to obtain bounds

for optimal solutions and multipliers of solvable differentiable convex

programs once they are cast as monotone complementarity problems. (See

Section 2.) But before doing that we show how the bounds of Theorem 1.1

can be extended to approximate solutions of monotone complementarity

problems which may not even be solvable. Let
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(1.2) a: inf {zwlw-F(z)>0, z>O} > 0,

and for £ > 0 let (I(e), ;(c)) be an c-solution of the optimization

problem of (1.2), that is

(1.3) W(c) a F(I(e)) >0, i(e) > O, a + e > z(e)w(c) >(x

Note that for any e > 0, an e-solution always exists provided problem

(1.2) has at least one feasible point. A O-solution exists provided the

infimum of (1.2) is attained, that is the infimum is a minimum. Furthermore

if x = 0, then an e-solution of (1.2) is an "approximate" solution of the

complementarity problem (1.1) which is an exact solution if e - 0. With

these concepts in mind it follows from (1.2), (1.3) and the monotonicity of

F that, for any feasible (z,w) and c > 0,

(1.4) 2zw + c > zw + a + c > zw + i(c);(c) _ z;(c) + E)w

Consequently, arguing exactly as in Theorem 1.1 we obtain the following

bounds for c-solutions of the optimization problem (1.2).
k

1.2 Theorem Let F be monotone on R+ and let (z,w) be some feasible

point of the optimization problem of (1.2), that is, w - F(z) > 0, z > 0,

and let c > 0. Any c-solution (i(c), ;(e)) of (1.2), defined by (1.3),

is bounded as follows:

(a) I(()l 1 (zw+a+c)/min w1I < (2zw +c)/min wi I

(b) 1l;j (F)ll lzw + < /mnz (2zw + )/min Z icJ

S(c) (C(), ;j(E)Il -(zw +M+¢)/ Min {z l j , w il l < z w + c ) / mi n { z i j wl I }1

where I - {iIw >0} and J - {lz >0}.

-Now"
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Note that this theorem subsumes Theorem 1.1. For if we assume that the

complementarity problem (1.1) is solvable as in Theorem 1.1, then we can set

a - e - 0 in Theorem 1.2 and obtain Theorem 1.1.

A generalization of Theorem 1.2 is possible if, instead of one feasible

point (z,w), we consider p feasible points (zJ,wJ), j=l,2,...,p, of

the optimization problem of (1.2) and correspomding weights XJ > 0, jul,...,p,

p
such that I XJ = 1. Then by (1.2), (1.3) and the monotonicity of F we have

Jul

that

(1.5) 2 Z AXzJw j +e> XJzJwj +a+ C> xJ X z j wJ +1(C) w (C) > JzJw() + I xJi(c)w j
j-l j--l jl jl Jul

Again arguing as in Theorem 1.1 we obtain the following bounds.

____ k adlt(z j wj

1.3 Theorem Let F be monotone on R+ and let , ), j-l,2,...,p, be

feasible points of the optimization problem of (1.2), that is, wJ = F(zJ) > 0,

zJ> 0, j-l,2,...,p. Let AJ > 0, j=l,2,...,p, I = 1 and let > 0. Any
jul

c-solution (i(c), ;(c)) of (1.2) defined by (1.3) is bounded as follows:

4p p

julJu e

p p
Jul jl

p p
(c) II(E), J(C)I~ Xiz w ++c+)/min{z^~ ie, }< 1(21 iz WJiec)/min{zlEJw iCI

where I = {ii >0 } ' J = {i12i > 0}, 2:= I zJw J .
1 1 Jul jul

We note that the first inequality of each of (a), (b) and (c) of Theo-

i rem 1.3 remains valid even if we do not require that wj > 0 and zJ > 0, but
merely that z -o, where R+ c D c Rk, F is monotone on D and z> 0

and > 0. This remark will be employed in Theorem 1.4.
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An application of Theorem 1.3 is the following boundedness result

for complementarity problems satisfying a new, "distributed" constraint

qualification, and for which we also establish an existence result.

1.4 Theorem (Existence and boundedness of solutions of monotone complemen-

tarity problems under a distributed constraint qualification) Let

R k k eF: D Rk be monotone and continuous on D such that R+ c D c Rk, let

z 0Eo, w3 = F(zJ).ERk, j=l,2,...,p, be such that z:= > 0,
j=l

W:= I ,Jwj > 0 for some AJ > 0, j=l,2,...p, I X. = 1. Then the complemen-
j=1 j=li

tarity problem (1.1) is solvable. Any solution (z,) is bounded as follows:
P

(1.6) XI1wj mi _<wi

Proof The bound (1.6) follows from Theorem 1.3(a) with a = E = 0 and the

remark following it, once we have established the existence of a solution to

the complementarity problem (1.1), which we proceed to do now by means of the

Brouwer fixed point theorem [1,14]. Let

C:= fz(z>o, WzW+Y1,

where

(1.7) y > max {1,-2+ p )JzJwj } >1
jul

The set C is nonempty, compact and convex and the single-valued mapping [4]

defined by the 2-norm projection of z - F(z) on C

z - argmin Ily-z +F(z) 12
yeC

defines a continuous function from C into itself. Hence by Brouwer's
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theorem this function must have a fixed point E EC. Such a point satisfies

the minimum principle optimality condition [6].

(1.8) EC, F()(y- ) 0 VycC

If @i < W2 + y then z solves (1.1). Indeed i + 6e, i=l,2,...,k, is

in C for 6 sufficiently small and positive and ei the ith unit coordi-

nate vector, and hence by (1.8) it follows that F(z) > O, i > 0, and

!F(z) , 0 by taking y = 0 in (1.8). We now show that the case

(1.9) +y

cannot occur. For if it did, then from the monotonicity of F we have

!F(l) > -ziw j + ziw + iwj , j=l,2,...,p

where w: F(R). Multiplying by XJ and summing over j gives

P
AF(i) > x "JzJwj + Z; + iw

j=l

> -" F(Q) (By (1.9) and (1.7))

Hence F(i)(2-i) < 0 which contradicts (1.8). So (1.9) cannot occur and

i solves (1.1). 0

We note that the existence part of the above theorem for the ordinary

constraint qualification, that is p 1 1, was obtained by Mord

[12, Theorem 3.2) and by one of the authors in [8, Theorem 1] for the case

of multivalued monotone mappings.

It is interesting to note that the complementarity problem of Megiddo

O[10 which has no solution does not satisfy the distributed constraint

An
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qualification of Theorem 1.4 and hence demonstrates the sharpness of that

condition. On the other hand Theorem 1.3(a) can be used to give an exact

upper bound on the bounded component of the solution of problem (1.2) for

Megiddo's example.

We also note the distributed constraint qualification of

Theorem 1.4 is implied by the ordinary constraint qualification if
k Rk

we take p =1 . The converse is true if D = R+ and F is concave on R+.

However F is not concave in general, and in fact is merely monotone when

it is derived from a differentiable convex program. (See Section 2.) How-
k

ever for the general case of a monotone F and D = R it can be shown

[9] that the two constraint qualifications are equivalent. Nevertheless

the distributed qualification may be easier to verify.

,!A

S

*

I
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2. Bounds for Solutions of Convex Programs

We consider now the solvable differentiable convex program

(2.1) min f(x) s.t. y - -g(x) > 0, x > 0
x

where f: R n - R, g: R n +Rm are convex and differentiable functions,

together with its dual [6)

(2.2) max L(x,u) - xVxL(x,u) s.t. v = 7xL(x,u) !0, u >
x u

where L(x,u) is the standard Lagrangian

L(x,u) - f(x) + ug(x)

and Vxdenotes the gradient vector with respect to x. We note that the

Karush-Kuhn-Tucker condi tions

v - V L(x,u) = Vf(x) + uVg(x) Z 0, x > 0, xv = 0

(2.3) y a V uL(x,u) = -g(x) 1 0, u > 0, uy -0

hold if and only if (x,y,u,v) solves the dual programs (2.1)-(2.2) with

equal extrema [6). If the constraints of (2.1) satisfy the Slater constraint

qualification, that is g(x) < 0 for some x > 0, then for each solution of

(2.1) the Karush-Kuhn-Tucker conditions (2.3) are satisfiable [6). If we

make the definitions

(2.4) z: (w VLxu

thenthe(U)' ( (-Vu L(x,u))

thentheKarush-Kuhn-Tucker conditions take on the equivalent complementarity

ii problem formulation [2J
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(2.5) w = F(z) > 0, z > 0, zw - 0

Note that the "twisted" derivative involved in the definition of F(z) has

also been used in [3,13,5,8]. We now establish the monotonicity of this F(z).

2.1 Lemma Let f and g be differentiable and convex on Rn  and let F(z)

be defined as in (2.4). Then F(z) is monotone and continuous for all

zERn Rm

Proof By the convexity of g and > 0, u > 0 we have that

G (g(x) -g(i)) > vg(i)(x - )

-u (-g (i) + 9(x)) -uVg (x) (-i + X)

Addition of these two inequalities gives

(2.6) - (u- 5)(g(x)-g(i)) > (;vg()-uVg(x))(x-i)

Hence

(z- )(F(z)-F(l)) = (x-R u-ti) V xL(x,u)-VxL(i,5)

/J.(g(x)- g(i))

> (x-R)(Vf(x)-Vf(R)) (By (2.6))

> 0 (By convexity of f)

The continuity of F follows from the fact that a differentiable convex

a function on Rn is continuously differentiable. 0

We can now apply Theorem 1.1 to the monotone function F(z) of (2.4)

/ to obtain bounds for optimal solutions and multipliers of (2.1).

V 2.2 Theorem Let f and g be differentiable and convex on Rn. Each

primal-dual feasible point of (2.1)-(2.2), that is (x,y,u,v) satisfying
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y = -g(x) > 0, x > 0, v = VxL(x,U) 0, u > 0,

bounds any point y which solves the primal-dual programs (2.1)-(2.2)

with equal extrema, or equivalently, which satisfies the Karush-Kuhn-Tucker

conditions (2.3) for (2.1) as follows:

(a) Z =: JJ zlJl < (xv +uy)/mln vi,1 l
i Il I

(b) 11j2 1l < (xv+uy)/min uicJ2

(c) 1 I (xv + uy)/min Y I.2

(d) 11J Ill < (xv + uy)/min xijl

where

I1 = [iIvi>O}" J2 = {lui>0}'1 2 = {ilYi>01, J, = {iJxi>01

Proof Immediate from Theorem 1.1, Lemma 2.1 and definition (2.4). 0

Theorem 2.2 is a partial extension of Theorem 3.1 of [7] where bounds

for solutions of linear programs were given.

All the other theorems of Sectiom 1 apply in a straightforward manner

to the convex program (2.1) via the complementarity formulation (2.4)-(2.5).

We state below the counterpart of Theorem 1.4 for the convex program (2.1).

2.3 Theorem (Existence and boundedness of solutions of differ-

entiable convex programs under a distributed constraint qualification)
in
Let f and g be differentiable and convex on Rn, let

yJ -g(x j ) Rm, xj  v VxL(x ,u J )Rn, uj > 0, J-1,2,... ,p
/1 Ai mRx



be such tha fo oe X 0, J.1,2 ...... p,

jul Jlin

j
X:n ~ andnt nR X m :

tonicityy of F of LeVn 2. Is esalse0nyo

Thnte inotasiml exampl ilstn the blponds (2Thorem2.2. it

2eal e ma. Any suc solu t ys b -e >oune as, folow0

The~~ dulprbemi

m X +x xl1) mi V

4~~~~7 sZ.v 1 = +e>

The~ prmlda souto is

()to et af bon o n em 2. setablishe onl on 0, x2  R and u o on 0. xenc

2b) Toamge ambonx on Il Ste x e > 0, 2 ec an > = .Hec
y 0 v * 1 e, 2 2 0, xv+u t ei n
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0 = II11 < inf a(1 +e') 0 0
cL.O

(c) To get a bound on 115111, take x, - 1 > 0, x2 = a + e, a > 0 and

u = 1. Hence y = a, vI = 1 + e, v2 = 0, xv + uy = 1 + e + a and

1 , in1 < nf I+e 1
Y> 0 1

(d) To get a bound on ill,, take x1 = a > 0, x2 = e and u - 1.

Hence y = 0, vI = 1 +e e, v2 = 0, xv + uy = a(1+e), and

2inf (1+eoa)
Z . .ll1 <an -

a>0O

We conclude by remarking that extensions of the results in this paper

can also be established for the more general case in which the continuous

monotone function F is replaced by a maximal monotone multifunction.

Such extensions allow us to handle problem (2.1) with f and g nondiffer-

entiable, convex and possibly taking the value of +. Further extensions

can also be proved in which Rk is replaced, for example, by any reflexive

Banach space and R is replaced by a closed convex cone satisfying certain
t+

interiority/l inearity properties.

-A

r. 
.
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